Standard Model Signals and New Physics Constraints

Erik Brubaker
University of Chicago
for the CDF and D0 Collaborations

APS April Meeting Apr 12, 2008

Searches at Hadron Colliders

- The Tevatron is a discovery machine
 - Hadron collider:
 - Quark constituents of p, pbar experience all known forces.
 - Interactions at a range of center-of-mass energies.
 - Highest energy fundamental collisions ever artifically produced
 - Two well established detectors.

The Standard Model

- Particle physicists:
 Bearers of the faltering standard of reductionism
- The Standard Model (SM) is the framework for all analysis.
- Incomplete!
 - Higgs (Winer, next talk)
 - Unanswered questions

Searches and Discoveries

- What constitutes a discovery?
 - That which is experimentally observed or verified for the first time.
- No new physics in early Tevatron running.
 - Mine the data for interesting signals with ever more precision.
- Low-rate SM processes
 - Interesting in their own right.
 - Invaluable laboratory for validating tools and techniques.

Search strategies

If you know what you're looking for.

Tune cuts, develop powerful discriminants to separate known signal, known background

If you're interested in a class of models.

Define classes of interesting events. Set limits in model parameter space.

• If you want to produce generic results not tied to a specific model.

Signature-based searches.

Consistency with null hypothesis (SM).

Generic limits on NP cross-sections.

Experimental signatures

- Search final states with:
 - Photons
 - Electrons
 - Muons
 - Taus
 - Missing Energy
 - Neutrinos
 - New non-interacting particles
 - Hadronic jets (quarks, gluons)
 - Heavy flavor jets (bottom, charm)
- Experimental challenges:
 - Particle identification (efficiency?)
 - Energy / momentum measurement (calibration?)
 - Triggering (rejection factor 10⁴)

Results outline

- 1. A successful search for a small signal at the Tevatron: single top quark production.
- 2. Global search for new physics.
- 3. Specific models and final states.
 - Resonances (ttbar, dielectron)
 - SUSY (Chargino/neutralino, squark/gluino, stop/sbottom)
 - Non-SM Higgs

Single top search intro

- Electroweak production of top quarks.
 - ~3 pb predicted in SM
- Rate $\propto |V_{tb}|^2$
- Sensitive to new physics
- Same final state as WH

Need advanced techniques...

Single top search techniques

- Signal characteristics known
 - Use the information to maximize signal/background discrimination.
- Multivariate techniques
 - Classify events according to signallike-ness.

Must validate background shapes in signal region field [Events/0.1

- Data control samples
- Systematics

April 12, 2008

- Multiple analyses (5 CDF, 3 D0)²⁰
 - Robust results, cross-checks, collaboration.

Single top results (1)

Example analysis and channel from each experiment.

Next combine results for added power...

Single top results (2)

- Combine results within experiment
 - D0: Best Linear Unbiased Estimator (BLUE)
 - CDF: Asymmetric Iterative BLUE; Evolved Neural Networks

Signal Significance		Cross-Section
Expected	Observed	Measured
D0 (900 pb ⁻¹)		
2.3σ	3.6σ	$4.7 \pm 1.3 \text{ pb}$
CDF (2200 pb ⁻¹)		
5.1σ	3.7σ	$2.2 \pm 0.7 \text{ pb}$

Search for W' in single top sample (1)

• Use same tools to search for structure in M_{Wii} .

- Massive W-like boson (W') predicted in various models.
- No deviation from SM observed; set limits assuming SM-

like fermion couplings.

$$M_{W'} > 800 \text{ GeV/c}^2 \quad (M_{W'} > M_{vR})$$

 $M_{W'} > 825 \text{ GeV/c}^2 \quad (M_{W'} < M_{vR})$

Search for W' in single top sample (2)

• D0 performs a similar search.

• For W'_L, interference with SM W boson is

taken into account.

CDF global search for new physics

- Analyze all high-p_T data simultaneously for evidence of new physics.
 - Less sensitive than dedicated analyses.
 - Motivation: don't miss something obvious for failure to look!
- Every event categorized by identified physics objects ($p_T > 17 \text{ GeV}$).
 - ~400 exclusive final states
- SM expectation modeled by
 - Pythia & Madgraph generators
 - Full detector simulation
 - Fitted global corrections (43) to theoretical & experimental models

Session X12

CDF global search results (1)

- Look for
 - 1. Deviations in event counts & ~20,000 kinematic distributions.

2 fb⁻¹

2. Localized excesses (bumps) in ~5000 mass distributions.

No sign of new physics

CDF global search results (2)

- Look for
 - 3. Excesses in high- p_T tails.
 - Algorithm determines most discrepant region
 - Correct probability for trials factor

Global p-value = 0.08.

No evidence of new physics in 2.0 fb⁻¹ of CDF data from the global search.

Resonance searches: ttbar

- Many models predict new resonances decaying to pairs of SM particles.
 - KK states, Z', etc.
- Top quark could have large coupling to new physics...
- Select ttbar events with
 >=1 NN btag; allow 3-jet events for increased statistics.

Narrow leptophobic Z': $M_{Z'} > 760 \text{ GeV/c}^2$ (expected: 795 GeV/c²)

Resonance searches: ee

- Dielectron events:
 - Very clean signal
 - Excellent calibration using Z peak.

CDF Run II Preliminary

APS April Meeting, St Louis, MO

Supersymmetry

Extension of space-time symmetry.

Q |Boson> = |Fermion>

Q |Fermion> = |Boson>

Every particle has a superpartner.

Addresses problems.

Many new parameters.
MSSM/mSUGRA most common

framework.

Must be broken.

- Hierarchy
- Unification
- •Strings

R-parity:

- →Lightest supersymmetric particle (LSP) is stable.
- →SUSY particles pair-produced.

April 12, 2008

APS April Meeting, St Louis, MO

Chargino/Neutralino results

- Low mass scales, but clean signal with multiple leptons, MET
- Optimize channels independently
- Expect O(10) SM events.
- Data consistent with SM prediction.

No slepton mixing: $M(\chi^{\pm}_{1})>145 \text{ GeV/c}^{2}$

mSUGRA: $M(\chi_{1}^{\pm}) > 140 \text{ GeV/c}^{2}$

Squark/gluino results

- Higher mass scales, but strong production → high rates.
- Hadronic jets and missing energy
 - Large SM backgrounds from generic QCD, W+jets, ttbar
- After cuts, expect O(100) SM events.
- Data consistent with SM prediction

April 12, 2008

APS April Meeting, St Louis, MO

Light stop/sbottom results

- $\widetilde{t}_1 \rightarrow bl\widetilde{v}$ $\widetilde{v} = LSP$
- Final state: $e + \mu + MET (+bb)$
- Data consistent with SM prediction

- $m_{\tilde{g}} > m_{\tilde{b}} : \tilde{g} \to b\tilde{b}, \tilde{b} \to b\tilde{\chi}^0$
- Final state: 4b + MET
- Data consistent with SM

April 12, 2008

$B_s \rightarrow \mu\mu$

• $BR_{SM}(B_s \rightarrow \mu\mu) \approx 3.8 \times 10^{-9}$

• SUSY: $\propto (\tan \beta)^6$

95% CL Limits on $\mathcal{B}(B_s \to \mu\mu)$

CDF: BR($B_s \to \mu\mu$) < 5.8x10⁻⁸ @95% CL

D0: BR($B_s \to \mu\mu$) < 9.3x10⁻⁸ @95% CL

5.5

Invariant mass $(\mu^+ \mu^-)$ [GeV/c²]

0.85

0.85

Non-Standard Model Higgs (D0)

- Fermiophobic Higgs
 - Decay to $\gamma\gamma$
 - Look for diphoton mass resonance
 - Limit in m_h -Br($h \rightarrow \gamma \gamma$) plane:

- Doubly-charged Higgs
 - Pair produced, 4μ final state.
 - Limits assume 100% BR to muons.

Non-Standard Model Higgs (CDF)

• MSSM Higgs production cross-section enhanced at large tan β.

- Decays to ττ (10%)

- Decays to bb (90%)

 Tau triggering, identification, reconstruction.

• No excess observed; limits in m_A -tan β plane.

Conclusions

- Tevatron data so far consistent with the Standard Model
 - Low-rate SM processes (single top, diboson) showing up as expected.
 - No indications of BSM physics.
- Some interesting features to keep an eye on.
- Much more data yet to come.

Additional Material

New physics from s vs t cross-section

stop/sbottom

D0 limit for stop $\rightarrow c\chi^0$ in 1 fb⁻¹

MSSM Higgs

CDF and D0 limits together, μ <0 and μ >0

B_s→μμ constraining mSUGRA

95% CL Limits on $\mathcal{B}(B_s \to \mu\mu)$

